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An internal solitary wave of large amplitude*

Motoyasu MIYATA**

Abstract: A theory of a finite-amplitude internal solitary wave in a two-fluid system is
presented. Both the profile and the dispersion relation of the wave are different from those
of the KdV or the Benjamin-Ono theory. Particular attention is paid to the fact that the
present theory is valid for amplitude larger than the KdV soliton and the former is a generali-

zation of the latter in a two-fluid system.

1. Introduction

Finite amplitude effects on internal waves have
been studied by numerous investigators. Among
other theoretical works, BENNY (1966) showed
that the shallow water motions in two layers
are governed by the Korteweg-de Vries equation.
This theory was extended to include higher
order non-linear effects by KOOP and BUTLER
(1981). In addition to the shallow water theories,
non-linear internal wave motion in fluids of in-
finite extent was analyzed by BENJAMIN (1967)
and ONO (1975). These shallow-water and
deep-water problems have solitary wave solutions
(The formulae are given in the Appendix).
JoePH (1977) and KUBOTA et al. (1978) pre-
sented the finite-depth theory which connects
these two problems.

All of the above theories are based on the
expansion parameter 0=A/h; where A is the
wave amplitude and A; is the smaller of the
two fluid depths, and therefore their results are
restricted to the case when J is small compared
with unity. However, some numerical calcu-
lations (PULLIN and GRIMSHAW, 2983, FUNA-
KOSHI and OIKAWA, 1984) as well as oceano-
graphic observations (e.g. SANDSTROM and
ELLIOTT, 1984) suggest the existence of large-
amplitude (0>1) solitary waves. The main
object of the present paper is to derive an analy-
tical solution of a steady large-amplitude solitary
wave in a two-fluid system.

2. Governing equations
Consider steady irrotational incompressible
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two-dimensional flow in a two-layer system
bounded above and below by rigid horizontal
walls. Both lower and upper fluids are homo-
geneous with densities p1 and ps and the depths
ki and hs (which is assumed to be greater than
h1), respectively (Fig. 1). The coordinate origin
is at a point on the undisturbed boundary be-
tween the two layers with z in the direction of
flow. The gravitational acceleration ¢ acts in
the z-direction. The wave train set-up is station-
ary in the (z, 2) plane, with fluid velocity
components (1, v1) in the lower layer and (us,
v2) in the upper layer.

Now, in any steady two-dimensional flow, the
volume flow rate per unit span in the absence
of friction has the same value at every cross-
section of the flow. That is, if we define
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Fig. 1. The two-layer fluid system under
consideration.
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Qz=§jzuzdz, (2

then each of Qi and Q: should be constant.
Also, Bernouilli’s equations for the two layers
with datum taken at z=0 are:

R1:p1+plgz+%—(u12+v12) , (3)

Re=ps+ 0202+ g—2(u22+v22) , (4D

where p; and p, are pressure and R; and R,
are constant. In addition, the flow force (or
the momentum flow rate per unit span, corrected
for changes in horizontal pressure force) must
be conserved. Therefore, if we write

S:‘j‘77 A (PI +p1u12)dz
—n
h2
+S (potom)dz, (5)
7

then S is also constant.
Substituting (3) and (4) into (5) and integrating,
we obtain

S—Ru(p+hi) +R2(77—712)+%plg(772——h12)

+i1029(h22_7?2) S Sﬁ (u®—vi?)dz
2 N

h
+{;j2w;~vfy&. (6)

Since in each layer a complex potential ws; exists,
we have

wilm)=¢;+i¢;, m=x+iz, (j=lor2), (7)

where ¢; and ¢; are velocity potential and
stream function, so that

dw;_ 065 | .09y _ 095 09
dm Oz = Ox 0z oz
=u;—ivy, (8)
w; should be an analytic function which satisfies
the boundary condition,

vi(, ~—hi)=wva(x, he)=0. 9

Such a function can be given by

dwj
dm

=e'“P u; (x, h), (h=—hy or he), (10)

where D is an operator,
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Equation (1) can be expressed as

+h)?
% (1___371__ ;Zx—z)ul(x, —hi). 2)

It should be noted that in deriving Eq. (12)
the fifth and succeeding terms in Eg. (11)
were neglected. This means that the following
assumption was made

(Az’“ )<<1 13)

where L is the horizontal scale of the wave
and A is the amplitude. Within the same
approximation, Eq. (12) can be changed to:

iz, —hl):<l+ (p+h)? d? > (on (14)

31 d2® Jp+hs

In the same way, if

— 4
< b4 ) <1 (15)

L

is assumed, we can obtain, approximately,

i 2 2
m@ﬁﬁ:0+@3ﬁ zﬁ)Qz (16)

Using Eq’s (10), (14) and (16), the right-hand
side of Eg. (6) can be integrated. The result is:

S—Ri(n+h1)+ Re(p—ha)

+%plg( h12)+—ng(kz —1%)
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3. Solitary wave solution
Assuming waves of solitary type, we have at
infinity a uniform flow with constant velocity c.

Q1=Ch1, Q2=Ch2, (18)
Ri=2Lp

1——2‘0 +P2gh2, (19)
Ro=L2p

2—70 +P2gh2, (20)

S—_— <P1}L1 +p2h2)c2
+ %(plhﬂ +0ohe?) + paghihe. (1)

From Eq.’s (17), (18), (19), (20) and (21), we
obtain

2

dn\2
“63— [(01h1% — 02ha?))— hiho(01hi + p2hs)] <Z.Z‘->

+(p1— 02)g* + (01— 02)[g(h1 — h2) — c*]n®
+ [(o1h2+ p2h1)c?— (01— 02)ghihe 7?2 =0,

which can be written in a simpler form by
putting

p=ml, x=mé, A=ha,
he/hi=1, 02/p1=s,

o 91— p2)hihs

— F2=c2/c,? .
e O1he+pshi ¢/e
That is,
M [ di\? _
5 <?"§> +K=0, (22)
where
vy 2Fr¥(1+7s)
M= s
r=Fe -1+ T e
K= r-+s
r2s—1 ¢
r(l+7rs)

Eq. (22) can be interpreted as the motion of a
particle with mass M and zero total energy in
a field whose potential is given by K. The
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Fig. 2. The potential K as a function of .
(The scales are arbitrary.)

curve for K is shown in Fig. 2. It is seen that
solitary waves are possible when K is negative

through =0 and p=a. For this, the leading
term of K must be negative:

F>1.

Since a represents the amplitude of a solitary
wave, K=0 at {=a should provide -the dis-
persion relation (Note that « is also related to
horizontal scale as will be shown in Fig. 4):

r(l—F2)+|:r—l+ il—_—leZ}a—aZ:O,
. r+s

or

<l+a)(1—%)
2 __ .
F _~—-—-———l_ T . (23)

r+s

a

From Eq. (22) we can also determine the upper
limit for the wave height:
1 r(1—s)
< — 2
a< Z[T 1+ 5= F] 24
Note that if the difference of the densities of
the two layers is small (s~1),

aé%(r—l).

Figure 3 shows the dispersion relation for various
parameters. For comparison, the dispersion
curves of the KdV and BENJAMIN-ONO solitary
waves are also shown.’

The shape of the wave is known from Eq.
(22) which can be rewritten as:



46

F

1.8j
Y

|6-' ......... B-0

| @
Fig. 3.

La mer 23, 1985

F ’r
- ; I=5
r‘]5\_,// 1
i
o5 ——— - K4V //////
* 1ix/
. B-0O W =10
s
7
"/
Y
par r=15
| /
20
"/
///’
4
" r=10
/////
//,/
154 g
7
// r=5
//
]4O T T T T T
0 2 4 6 a

The dispersion curves for several parameters of 7 and a, with s=0.98.

The corresponding curves for the KdV (broken line) and BENJAMIN-ONO
(dotted line) theories are based on Eq.’s (A2) and (A4).

2 e v14+B "
\/ we= chc+DC ciDl*
Wiezrac
V(14 BO(C+DL—-0%
+§ < _E4E
CVITB(CTDL—)
where
r2s—1
=)’ C=r(1-F%,
o r(l—s)
D=r l+_r+s F2,

and E, and E; are elliptic integrals of the first
and third kind (See, e.g. ABRAMOWITZ and
STEGUN, 1965). Some examples of the wave
form are shown in Fig. 4.

4. Discussions and concluding remarks

In the two-layer model of real ocean, s is
usually close to unity and in that case, both the
wave form and the dispersion relation depend
little on s. Thus all the calculations for Figs.
3 and 4 were done for a fixed value of s=0.98.
It is to be noted that the variation of F? is
nearly quadratic in a (Ev. 23). Fig. 3 shows
that the dispersion curve of the obtained solitary
wave is substantially different from either that
of the KdV or BENJAMIN-ONO soliton except

for small a. It should be noted that the upper
limit exists for a due to the inequality (24), but
this is a necessary condition for the greatest
wave height and whether or not it is also suf-
ficient remains to be studied.

The wave profile of the present result is also
quite different from the existing two theories
(Fig. 4). However, the discrepancy between
the obtained and the KdV solitary wave forms
becomes smaller for the smaller amplitude. This
can be also known from Egq. (22). That is, if
|£]<1 is assumed, K in Eq. (22) is approximated
by a cubic equation of {, which is an integral
form of the KdV equation (BENJAMIN and
LIGHTHILL 1954, FENTON 1972). In this sense
the obtained wave is a generalized form of the
KdV soliton for large amplitude.

For Qi, Qs, Ri, R; and S, it is possible to
choose values other than those given by (18),
(19), (20), and (21). Then, in general, a linear
term and a constant will be added to the nume-
rator of K, so that the solution of Eq. (22) will
be a periodic wave of large amplitude which is
a generalization of the cnoidal wave (see e.g.
BENJAMIN and LIGHTHILL 1954).

The two-layer model presented here may be
too much simplified to be directly applied to the
real ocean where stratification plays an important
role. However, some laboratory experiments
suggest that such large amplitude waves can be
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Fig. 4. Profiles of the solitary wave for various parameters of a and », with
$=0.98. The KdV (dotted line) and BENJAMIM-ONO (broken line) soliton
forms calculated by Eq,’s (Al) and (A3) are also plotted.

Fig. 5. DPossible formation of large amplitude
waves. (d), (e) and (f) shows a time sequence
of the waves advancing to the left (After
MANABE, 1984).

in fact generated. For instance, MAXWORTHY
(1980) reported that large amplitude solitary
waves were formed after gravitational collapse
and mixing of stratified fluids. Manabe’s (1984)
experiment, although her main interest was on
the behaviour of intruding density front using
two miscible fluids, clearly shows a series of
large bumps each of which resembles in shape
the solitary wave discussed above (Fig. 5).

Fig. 6. DPossible formation of large amplitude
waves. The waves in (a) and (b) are produced
in different depth ratios and they are advancing
to the right (After WOOD and SIMPSON, 1984).

Similar feature is also seen in WoOOD and
Simpson’s (1984) experiment (Fig. 6). The front
half of a bump from Manabe’s experiment is
drawn in Fig. 7 to be compared with theory.
Agreement is fairly good.

In summary, a non-linear integral equation
has been derived to describe a steady motion in
a two-layer fluid system. This equation was
expanded to an approximation to provide the
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Fig. 7. Comparison of the theory (dotted line)
with Manabe’s experimental data (solid line 1).
Corresponding KdV (solid line 2) and BENJA-
MIN-ONO (solid line 3) theoretical curves are
also shown.

analytic solution of a solitary wave of large
amplitude, which is different from either KdV
or BENJAMIN-ONO soliton. The dispersion
relation, with a necessary condition for the

grestest wave amplitude, was also obtained.

The author wishes to thank Ms. T. MANABE,
Drs. K. KAJIURA, A. MASUDA, M. YOSHIZAKI
and K. IsHII for helpful discussions and com-
ments. Drawing and typing were done by Ms.
T. OsADA.

References

ABRAMOWITZ, M. and I.A. STEGUN (1965): Hand-
book of Mathematical functions. Dover, 1045 pp.

BENJAMIN, T.B. (1967): Internal waves of perma-
nent form in fluids of great depth. J. Fluid Mec.,
29, 559-592.

BENJAMIN, T.B. and M.J. LIGHTHILL (1954): On
cnoidal waves and bores. Proc. Roy. Soc. A224,
448-460.

BENNEY, C.J. (1966): Long nonlinear waves in fluid
flows. J. Math. Phys., 45, 52-63.

FENTON, JOHN (1972): A ninth-order solution for
the solitary wave. J. Fluid Mech., 53, 257-271.

FUNAKOSHI, M. and M. OIKAWA (1984): Solitary
‘waves in two-layer fluid. Bull. Res. Inst. Appl.
Mech., Kyushu Univ., 60, 89-101 (in Japanese).

JosepH, R.I. (1977): Solitary waves in a finite depth
fluid. J. Phys. A: Math. General, 10, 1225.

Koop, C.C. and G. BUTLER (1981): An investi-
gation of internal solitary waves in a two-fluid
system. J. Fluid Mech., 112, 225-251.

KuBoTaA, T., D.R.S. Ko and L.D. DOBBs (1978):
Weakly nonlinear, long internal gravity waves
in stratified fluids of finite depth. J. Hydronaut.,
12, 157-165.

MANABE, T. (1984): Intrusion of water along the
horizontal bottom. Master thesis, Geophysical
Institute, University of Tokyo, 75 pp (in Japa-
nese).

MAXWORTHY, T. (1980): Experiments on solitary
internal Kelvin waves. J. Fluid Mech. 129, 365-
383.

ONO, H. (1975): Algebraic solitary waves in strati-
fied fluids. J. Phys. Soc. Japan, 39, 1082-1091.

PULLIN, D.I. and R.H.J. GRIMSHAW (1983): Non-
linear interfacial progressive waves near a bound-
ary in a Boussinesq fluid. Phys. Fluid, 26, 897-
905.

SANDSTROM, H. and J.A. ELLIOTT (1984): Internal
tide and solitons on the Scotian Shelf: A nutrient
pump at work. J. Geophys. Res., 89, 6415-6426.

Woop, I.R. and J. E. SIMPSON (1984): Jumps in
layered miscible fluids. J. Fluid Mech., 140,
329-342.

Appendix
The KdV equation for the two layer fluid
system has the solitary wave solution of the form

= Asech? x;d , (AD)
with
P Y L (A2)
3 c1
where

5 9o2—02)hihe

o= ‘01}12+‘02hl
3eo(7?—s)
C1— TN
2hir(r+s)
_ cohi?r(rs+1)
T 6+
Oz _ he
s o and r= ™

The BENJAMIN-ONO equation gives the solitary
wave profile of the Lorentzian type for internal
wave motion of infinite extent. (he—o0, A1 =nh)

A2 )
S i — (A3
7 (x—ct)2+42° )
with
3 A 4 M

— 2 == A4
CACQ\/1+4 h’l T”A’ \ )

where





